Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation

نویسندگان

  • JONATHAN E. HOFFMAN
  • FREDRIK K. FATEMI
  • GUY BEADIE
  • STEVEN L. ROLSTON
  • LUIS A. OROZCO
چکیده

Optical nanofibers (ONFs) provide a rich platform for exploring atomic and optical phenomena even when they support only a single spatial mode. Nanofibers supporting higher-order modes (HOMs) provide additional degrees of freedom to enable complex evanescent field profiles for interaction with the surrounding medium, but local control of these profiles requires nondestructive evaluation of the propagating fields. Here, we use Rayleigh scattering for rapid measurement of the propagation of light in few-mode ONFs. Imaging the Rayleigh scattered light provides direct visualization of the spatial evolution of propagating fields throughout the entire fiber, including the transition from core–cladding guidance to cladding–air guidance. We resolve the interference between HOMs to determine local beat lengths and modal content along the fiber, and show that the modal superposition in the waist can be systematically controlled by adjusting the input superposition. With this diagnostic we can measure variations in the radius of the fiber waist to below 3 nm in situ using purely optical means. This nondestructive technique also provides useful insight into light propagation in ONFs. © 2015 Optical Society of America

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Surface Wave Propagation in Transversely Isotropic Medium with Three-Phase-Lag Model

The present paper is dealing with the propagation of Rayleigh surface waves in a homogeneous transversely isotropic medium .This thermo-dynamical analysis is carried out in the context of three-phase-lags thermoelasticity model. Three phase lag model is very much useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon-electron interactions, phonon scattering etc. The n...

متن کامل

Rayleigh scattering, mode coupling, and optical loss in silicon microdisks

High refractive index contrast optical microdisk resonators fabricated from silicon-on-insulator wafers are studied using an external silica fiber taper waveguide as a wafer-scale optical probe. Measurements performed in the 1500 nm wavelength band show that these silicon microdisks can support whispering-gallery modes with quality factors as high as 5.23105, limited by Rayleigh scattering from...

متن کامل

Rayleigh scattering in few-mode optical fibers

The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant m...

متن کامل

Superlinear growth of Rayleigh scattering-induced intensity noise in single-mode fibers.

Rayleigh scattering generates intensity noise close to an optical carrier that propagates in a single-mode optical fiber. This noise degrades the performance of optoelectronic oscillators and RF-photonic links. When using a broad linewidth laser, we previously found that the intensity noise power scales linearly with optical power and fiber length, which is consistent with guided entropy mode R...

متن کامل

Raman amplification of matter waves

With the realization of coherent, laserlike atoms in the form of Bose-Einstein condensates it has become possible to explore matter-wave amplification, a process in which the number of atoms in a quantum state is amplified due to bosonic stimulation. Stimulation has been observed in the formation of condensates [1,2] and, more directly, has been used to realize coherent matter-wave amplifiers [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015